Thermal Protection Systems for Reusable Launch Vehicles

Max Blosser

Short Course: Thermal Control Hardware

Thermal & Fluids Analysis Workshop Hampton, VA August 22, 2003

OUTLINE

- Introduction
- Fundamentals of Aerodynamic Heating
- Approaches to Thermal Protection
- Metallic TPS
- Current TPS Research
- Integrated Multifunctional Structures

INTRODUCTION

INTRODUCTION

KEY TECHNOLOGIES FOR REUSABLE LAUNCH VEHICLES

Critical RLV Technologies

- More efficient propulsion
- Reusable cryogenic fuel tanks
- Improved thermal protection systems

- Large vehicle surface area
- Integration with vehicle structure
- Long life
- · Rapid turnaround

TPS Design Goals

- Increase
 - Operability
 - Durability
 - Capability
- Decrease
 - Mass
 - Cost
 - Risk

INTRODUCTION

TPS DEVELOPMENT: A MULTIDISCIPLINARY CHALLENGE

Required Disciplines

- Aerothermodynamics
- Structures
- Materials
- Heat transfer
- Vehicle systems
- Acoustics
- Fatigue and creep
- Panel flutter
- Manufacturing
- Testing

Interactions

- Thermal-structural
 - Structural support often undesirable heat short
 - Thermal expansion -> stresses and deformations
 - Material properties change with temp. & press.
- Surface deformations may affect aerothermal heating
- Chemical changes (oxidation) degrade material
- Sizing TPS and structure separately not optimal

AERODYNAMIC HEATING FUNDAMENTALS

AERODYNAMIC HEATING FUNDAMENTALS AERODYNAMIC HEATING OF TPS

Flow Phenomena

- Free molecular to continuum flow regimes
- Shock waves, shock interactions
- Convective and radiative heating
- Laminar to turbulent boundary layer transition

Interaction with Vehicle Surface

- Radiation equilibrium temperature
- Integrated heat load
- Surface emittance, catalysis and oxidation
- Surface roughness, steps, gaps, bowing

Vehicle Geometry

- Windward and leeward surfaces
- Stagnation region, leading-edge radius

Trajectory

- Rocket vs. airbreathing propulsion
- Quick, hot vs. longer, cooler trajectories

Heating Prediction

- Engineering codes
- Computational aerothermodynamics

AERODYNAMIC HEATING FUNDAMENTALS FLOW REGIMES

AERODYNAMIC HEATING FUNDAMENTALS SHOCK WAVES

Oblique Shock Wave

Normal Shock

- Supersonic to subsonic flow (M₂>1)
- Increase in pressure and temperature

Oblique Shock

- Parallel and normal components
- Calculate pressure and temperature changes for normal component
- M₂ can be supersonic

AERODYNAMIC HEATING FUNDAMENTALS CONVECTIVE AND RADIATIVE HEATING

AERODYNAMIC HEATING FUNDAMENTALS AERODYNAMIC HEATING OF TPS

- Both oxygen and nitrogen can be dissociated when passing through a shock wave
- If the vehicle surface acts as a catalyst for recombination, additional surface heating can result

AERODYNAMIC HEATING FUNDAMENTALS BOUNDARY LAYERS

Laminar-to-Turbulent Boundary Layer Transition

- Flow is usually laminar for high altitude, high enthalpy flow
- Aerodynamic heating can be several times higher for turbulent flow
- Rough surface can cause premature transition to turbulent flow
- TPS design seeks to minimize surface roughness

AERODYNAMIC HEATING FUNDAMENTALS PROPULSION EFFICIENCIES

AERODYNAMIC HEATING FUNDAMENTALS PROPULSION IMPACTS RLV CONFIGURATION

Rocket

Airbreathing

AERODYNAMIC HEATING FUNDAMENTALS HEATING VARIATION OVER A VEHICLE

APPROACHES TO THERMAL PROTECTION TYPES OF THERMAL PROTECTION SYSTEMS

Choose the simplest and/or lightest that works

Preferred RLV approach

APPROACHES TO THERMAL PROTECTION HEAT SINK STRUCTURE

Heat

X-15 WING STRUCTURE

- •The heat sink approach is generally practical for only very short heating pulses
- Not appropriate for RLV's

HEAT STORAGE IN STRUCTURES

Range of Applicability Depends on:

- Integrated heat load
- Structural heat capacity
- Allowable structural temperature limits
- Structural heat loss mechanisms

APPROACHES TO THERMAL PROTECTION HOT STRUCTURE

Hot Structure:

- Radiation equilibrium at surface $(q_{in} = q_{out})$
- Can reach steady state
- High temperature material
- Temp. gradients, thermal stresses
- Interfaces to cooler structures
- Large integrated heat loads

Applications:

- Supersonic cruise
- Lightly loaded RLV structures (control surfaces)

APPROACHES TO THERMAL PROTECTION TPS INSULATING STRUCTURE

Surface acts like hot structure

- Near radiation equilibrium temperature
- Reradiates most of incident heat
- Allows some heat to reach structure

Structure acts like a heat sink

- Integrated heat load through TPS
- Structural heat capacity
- Allowable structural temperature limits
- Structural heat loss mechanisms

Applications:

- Space Shuttle Orbiter
- Future RLV's

APPROACHES TO THERMAL PROTECTION TPS CONCEPTS VARY OVER VEHICLE SURFACE

APPROACHES TO THERMAL PROTECTION HEAT PIPE

Superalloy heat pipe leading edge for Shuttle wing

Heat Pipe Operation

- Sealed tubes containing working fluid
- Saturated wick lines interior
- Localized heating evaporates liquid
- Vapor travels to cooler region and condenses
- Liquid returns to hot spot through wick
- No pumps, sensors, or controls required

Operating liquid metal heat pipe

Carbon/carbon heat pipe leading edge for NASP wing

Heat Pipe Applications

- Diffuses a local hot spot
- Wing leading edges
- Nose caps

APPROACHES TO THERMAL PROTECTION ABLATION

Apollo Capsule

Ablator Operation

- Partially consumed by heating
- Heat absorbed as gases generated
- Gases block convective heating
- Ablator is also insulator
- Surface recedes with time
- Non-reusable

Ablator Applications

- Can accommodate very high heating rates
- Hot side of ballistic reentry capsules (Apollo)
- Planetary probes
- Missile nose caps
- Less attractive for large areas on RLV's

APPROACHES TO THERMAL PROTECTION TRANSPIRATION/FILM COOLING

Transpiration and Film Cooling

- Coolant is injected into the boundary layer
 - Porous surface transpiration
 - Discrete slots film cooling
- Prevents direct contact with hot flow
- Removes heat from structure
- Can accommodate large heating rates

Transpiration-cooled nose tip

Applications of Transpiration and Film Cooling

- Not mass-efficient for large areas
- Complex system, have to carry coolant
- Localized areas
- Nose tips
- Possibly sharp leading edges
- Airbreathing engine structures

APPROACHES TO THERMAL PROTECTION CONVECTIVELY COOLED STRUCTURE

Convectively Cooled Structure

- Coolant flows through passages in the structure
- Surface below radiation equilibrium temperature
- Large heat flux through outer skin into coolant
- Heat in coolant must be removed
- Can accommodate large heat fluxes
- Can accommodate large integrated heat loads
- Requires pumps, controls and plumbing

Convectively Cooled Structure Applications

- Mainly considered for airbreathing RLV's
 - High ascent heating
 - Fuel available for coolant/heat sink on ascent
- National AeroSpace Plane external structural skin
- Engine structures

NASP actively cooled panel

METALLIC THERMAL PROTECTION SYSTEMS

METALLIC TPS MOTIVATION FOR DEVELOPMENT

Candidate TPS

- Ceramics
 - Tiles
 - Blankets
- Ceramic Matrix Composites (CMC's)
- Metallic panels

Metallic TPS

- Ductile/damage resistant
- Mass efficient foil structures/insulations
- Much lower maintenance
- No re-waterproofing between flights

METALLIC TPS TECHNOLOGY DEVELOPMENT

MATERIALS CHARTERIZATION/ IMPROVEMENT

CONCEPT DEVELOPMENT

METALS

- Structural properties
- Surface properties

INSULATIONS

- Measured thermal properties
- Validated analysis
- Optimized combinations

CONCEPT DEFINITION

- Conception, design and analysis
- Vehicle integration

CONCEPT EVALUATION

- Coupon tests
- Panel tests

METALLIC TPS: MATERIALS HIGH PERFORMANCE METALS FOR TPS

METALLIC TPS: MATERIALS SURFACE PROPERTIES

Desired Surface Properties

- Oxidation protection
- Emittance > 0.8
- Catalytic Efficiency low as possible
- Reflectance high in 1-2.5 μm range

Effects of Emittance and Catalytic Efficiency

Achieving desired surface properties may require coatings

METALLIC TPS: MATERIALS IMPROVED INTERNAL INSULATIONS

OBJECTIVES

- Characterize current and proposed insulations as function of temperature and pressure
- Develop and verify analytical tools to predict insulation performance
- Design, fabricate and verify performance of insulations optimized for RLV
- Incorporated improved insulations into TPS for reduced mass

CANDIDATE INSULATIONS

- FIBROUS INSULATIONS
 - Q-felt (quartz fibers)
 - Saffil (alumina fibers)
 - Coated saffil (reflective coatings on fibers)
- MULTILAYER INSULATIONS
 - Internal multiscreen insulation (IMI)
 - U.S. multilayer insulation (SBIR)
- OTHER INSULATIONS
 - Aerogel
 - Optimized combinations

METALLIC TPS: CONCEPTS EARLY TPS CONCEPTS

Metallic Standoff TPS

ACC Multipost

Titanium Multiwall

Superalloy Honeycomb

METALLIC TPS: CONCEPTS RECENT TPS CONCEPTS

METALLIC TPS: CONCEPTS ARMOR TPS CONCEPT

METALLIC TPS: CONCEPTS SIZING OF SLOTTED HOLES IN ARMOR TPS

- Slotted holes were used for tank/TPS strain mismatch
- One corner of each panel was fixed and the others could move
- 14 load conditions

considered

- Tank pressures
- TPS temperatures
- Tank temperatures

METALLIC TPS: CONCEPTS SUPPORT BRACKETS IN ARMOR TPS

- Free thermal expansion of outer honeycomb layer
- Beaded to resist buckling
- Thin to reduce heat short
- Shear stiffness
- Critical structural element

METALLIC TPS: CONCEPTS ARMOR TPS INTEGRATED WITH CRYOGENIC TANK

METALLIC TPS: CONCEPTS FULLY ASSEMBLED ARMOR TPS PANEL

Four ARMOR TPS panels average 2.4 lb/ft²

METALLIC TPS: ANALYSIS THERMAL MODELING

Thermal Analysis

- Transient Thermal Problem
 - Surface temperatures vary from ambient to over 2000°F
 - Pressure varies from near vacuum to 1 atmosphere
 - Re-entry flight approximately 1/2 hour
 - Insulation sized to limit structural temperature

- Most TPS material thermal properties strongly temperature dependent
- Insulation conductivity strongly pressure and temperature dependent
- Gas conductivity in internal voids is complex
- Heat transfer through honeycomb sandwich involves multiple modes

Desired Features of Thermal Model

- Accuracy: includes all important modes of heat transfer
- Flexibility: easily modified to represent modeling and design variations
- Efficiency: suitable for large numbers of iterative calculations

METALLIC TPS: ANALYSIS

TYPICAL THERMAL RESPONSE OF METALLIC TPS TO RLV HEATING

Entry conditions typical of RLV with metallic TPS

METALLIC TPS: ANALYSIS EFFECTS OF RADIATION IN PANEL-TO-PANEL GAP

- Need small gaps to avoid large temperature increases
- Substructure temp. not sensitive to practical emittance values

CURRENT THERMAL PROTECTION SYSTEMS RESEARCH

CURRENT TPS RESEARCH CERAMIC BLANKETS

- DuraFRSI AFRSI blanket with a metal foil outer surface
- CRI blanket with rigidized outer surface

• High temperature FRSI (felt)

CURRENT TPS RESEARCH CERAMIC TILES

- AETB tile with TUFI/cgs coating
- BRI improved toughness, conductivity comparable to HRSI
- Tile leading edges
- Hybrid tiles with CMC outer layer
- SHARP leading edges high temperature ceramics

CURRENT TPS RESEARCH CERAMIC MATRIX COMPOSITE TPS

• X-33 Phase I C/SiC heat shield (1 ft x 4 ft)

CURRENT TPS RESEARCH CERAMIC MATRIX COMPOSITE HOT STRUCTURES

- NASP control surface component
- X-33 body flap incomplete design
- X-38 control surface
- X-37 control surface

CURRENT TPS RESEARCH METALLIC TPS

- X-33 windward TPS full vehicle TPS including seals and penetrations
- ARMOR TPS prototype panels
- Oceaneering metallic TPS

PRELIMINARY INTEGRATED CONCEPT CONSIDERATIONS

Intermediate material/structure

- Limits heat transfer
- Acceptable structural connection
- Candidate concepts
 - Discrete structural connections
 - Non-loadbearing insulation
 - Porous FGM
 - Structural foams
 - Enhanced heat storage (heat sponge)

Durable hot outer surface

- Low thermal expansion
- Strain compatibility
- Load sharing
- CMC's, MMC's, ?

Efficient inner structure

- Good structural properties
- Good thermal properties
 - High temperature limit
 - High heat capacity
 - High thermal conductivity

INITIAL GENERIC SANDWICH CONCEPTS

- Insulating structural foam core
 - High temperature capability
 - Strain capability comparable to structural facesheets
 - Strength to perform as sandwich core
 - Low conductivity

- Truss core
 - Discrete connections between the hot and cool facesheets
 - Acceptable structural connections
 - Acceptable heat shorts
- Insulation
 - Load-bearing or non-load-bearing

HEAT CAPACITY OF STRUCTURAL MATERIALS

- High heat capacity inner structure can reduce required insulation
- Heat capacity enhancement may be lighter than additional insulation
- Patent disclosure filed on Heat Sponge

THERMAL/STRUCTURAL SIZING METHOD

INTEGRATED MULTIFUNCTIONAL STRUCTURES HIGH THERMAL CONDUCTIVITY STRUCTURAL MATERIALS

High k inner structure

- Large panels with variations in heating over surface
- High thermal conductivity inner structure:
 - Enables uniform thickness panel sized for average heat load
 - No need to taper insulation thickness for local variations in heating
 - Reduces temperature gradients (and thermal stress/distortions)
 on inner surface
 - Allows all of inner structure to approach temperature limits and use all available heat capacity

SUPPLEMENTAL SLIDES

METALLIC TPS: ANALYSIS THERMAL CONDUCTIVITY OF A GAS IN A CAVITY

$$k_g = \frac{k_g^*}{1 + 2\frac{2 - \alpha}{\alpha} \left(\frac{2\gamma}{\gamma + 1}\right) \frac{1}{\Pr} \frac{\lambda}{L_c}}$$

 k_g^* - Thermal conductivity at 1 atm

Pr – Prandtl Number

L_c – characteristic length

 α – accommodation coefficient

 γ – ratio of specific heats

 λ – mean free path

$$\lambda = \frac{K_B T}{\sqrt{2}\pi \, d_g^2 P}$$

P-pressure

T – temperature

K_B – Boltzman constant

d_g– gas collision diameter

METALLIC TPS: ANALYSIS THERMAL CONDUCTIVITY OF HONEYCOMB SANDWICH

$$q = \frac{k_m}{t} \frac{\rho_{core}}{\rho_m} \left(T_o - T_i \right) - \frac{k_A}{t} \left(T_o - T_i \right) + \left(f(\eta, \varepsilon) \sigma \left(T_o^4 - T_i^4 \right) \right)$$

where:

$$f(\eta, \varepsilon) = 0.664(\eta + 0.3)^{-0.69} \varepsilon^{1.63(\eta + 1)^{-0.89}}$$

 $k_{\rm m}$ – metal thermal conductivity

k_A – air thermal conductivity

t – thickness

T_o – temperature on outer surface

T_i – temperature on inner surface

 ρ_{core} – h/c core density

 ρ_m – metal density

 ε – emittance

 η – length/diameter of h/c core cell

 σ - Stefan-Boltzman constant

METALLIC TPS: ANALYSIS

VENTING OF A METALLIC TPS PANEL

Approximate Analysis for Venting of Cavity with No Internal Insulation

A – area of vent hole

V – internal volume of panel

P – pressure inside panel

P_a – pressure outside panel

 ρ_a – ambient air density

$$P > P_a$$

$$\frac{P(t)}{P_a} = \frac{1}{2} \left[1 + \left(2\frac{P_i}{P_a} - 1 \right) \cosh(\beta t) - 2\sqrt{\frac{P_i}{P_a} \left(\frac{P_i}{P_a} - 1 \right)} \sinh(\beta t) \right]$$

$$P_a > P$$

$$\frac{P(t)}{P_a} = \frac{P_i}{P_a} + \beta \left(1 - \frac{P_i}{P_a}\right)^{\frac{1}{2}} t - \frac{\beta^2}{4} t^2$$

$$\beta = \frac{A}{V} \left(\frac{2P_a}{\rho_a} \right)^{\frac{1}{2}}$$

Internal insulation increases venting time

METALLIC TPS: ANALYSIS THERMAL STRESS AROUND A CYLINDRICAL FASTENER

Where
$$P = \frac{E_s \left[\left(\frac{b}{a} \right)^2 - 1 \right] (\alpha_f - \alpha_s) \Delta T}{\left(\frac{b}{a} \right)^2 (1 + \nu_s) + (1 - \nu_s) + \frac{E_s}{E_f} \left[\left(\frac{b}{a} \right)^2 - 1 \right] (1 - \nu_f)}$$

METALLIC TPS: ANALYSIS

FREE THERMAL BOWING OF A SANDWICH PANEL

Sandwich Panel With Facesheets at Different Temperatures

Panel bows into a spherical segment

$$\delta = t \left(\frac{(1 + \alpha_1 T_1)}{(\alpha_1 T_1 - \alpha_2 T_2)} \right) \left\{ 1 - \cos \left(\frac{L}{2t} (\alpha_1 T_1 - \alpha_2 T_2) \right) \right\}$$

Simplifying: if $\alpha_1 T_1 \ll 1$ and $\alpha_1 = \alpha_2 = \alpha$

L

$$\delta = \left(\frac{t}{(\alpha \Delta T)}\right) \left\{ 1 - \cos\left(\frac{L\alpha \Delta T}{2t}\right) \right\} \approx \frac{L^2 \alpha \Delta T}{8t}$$

METALLIC TPS: MATERIALS

OPTIMUM INSULATION FOR STEADY STATE HEAT TRANSFER

Minimize pk for minimum mass insulation in steady state

METALLIC TPS: MATERIALS MEASURED INSULATION PERFORMANCE

- The product of density and conductivity is a good indicator of insulation mass efficiency for steady state heat transfer (transient case more complicated)
- Saffil (alumina) and Q-felt (quartz) fibrous insulations have similar thermal performance at a given density
- Insulations with multiple reflective layers offer improved performance

